Announced in 2016, Gym is an open-source Python library created to help with the development of reinforcement learning algorithms. It aimed to standardize how environments are specified in AI research, making released research study more quickly reproducible [24] [144] while providing users with a basic user interface for engaging with these environments. In 2022, brand-new developments of Gym have actually been relocated to the library Gymnasium. [145] [146]
Gym Retro
Released in 2018, Gym Retro is a platform for support knowing (RL) research on computer game [147] utilizing RL algorithms and research study generalization. Prior RL research study focused mainly on enhancing representatives to solve single jobs. Gym Retro offers the ability to generalize in between video games with comparable ideas however various appearances.
RoboSumo
Released in 2017, RoboSumo is a virtual world where humanoid metalearning robot agents initially do not have knowledge of how to even stroll, but are given the goals of learning to move and to push the opposing agent out of the ring. [148] Through this adversarial knowing process, the agents find out how to adjust to changing conditions. When an agent is then eliminated from this virtual environment and placed in a brand-new virtual environment with high winds, the representative braces to remain upright, recommending it had learned how to balance in a generalized method. [148] [149] OpenAI's Igor Mordatch argued that competitors between representatives might develop an intelligence "arms race" that might increase a representative's ability to work even outside the context of the competitors. [148]
OpenAI 5
OpenAI Five is a team of five OpenAI-curated bots utilized in the competitive five-on-five video game Dota 2, that find out to play against human players at a high skill level completely through trial-and-error algorithms. Before becoming a team of 5, the first public demonstration took place at The International 2017, the annual best champion competition for the video game, where Dendi, a professional Ukrainian player, lost against a bot in a live individually matchup. [150] [151] After the match, CTO Greg Brockman explained that the bot had actually found out by playing against itself for 2 weeks of actual time, and that the knowing software application was a step in the instructions of developing software application that can manage complex tasks like a surgeon. [152] [153] The system utilizes a form of reinforcement learning, as the bots find out in time by playing against themselves numerous times a day for months, and are rewarded for actions such as killing an enemy and taking map goals. [154] [155] [156]
By June 2018, the ability of the bots broadened to play together as a complete group of 5, and they were able to beat groups of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibit matches against expert players, but wound up losing both video games. [160] [161] [162] In April 2019, OpenAI Five beat OG, the ruling world champs of the game at the time, wiki.snooze-hotelsoftware.de 2:0 in a live exhibition match in San Francisco. [163] [164] The bots' last public appearance came later that month, where they played in 42,729 overall games in a four-day open online competitors, winning 99.4% of those video games. [165]
OpenAI 5's mechanisms in Dota 2's bot gamer shows the obstacles of AI systems in multiplayer online fight arena (MOBA) games and how OpenAI Five has actually shown the usage of deep support learning (DRL) representatives to attain superhuman competence in Dota 2 matches. [166]
Dactyl
Developed in 2018, Dactyl uses machine finding out to train a Shadow Hand, a human-like robotic hand, to manipulate physical things. [167] It finds out entirely in simulation using the very same RL algorithms and training code as OpenAI Five. OpenAI dealt with the item orientation problem by utilizing domain randomization, a simulation approach which exposes the student to a variety of experiences instead of attempting to fit to reality. The set-up for Dactyl, aside from having movement tracking cameras, likewise has RGB cameras to allow the robotic to manipulate an approximate things by seeing it. In 2018, OpenAI revealed that the system was able to manipulate a cube and an octagonal prism. [168]
In 2019, OpenAI showed that Dactyl could fix a Rubik's Cube. The robotic was able to resolve the puzzle 60% of the time. Objects like the Rubik's Cube introduce complicated physics that is harder to design. OpenAI did this by enhancing the effectiveness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation technique of creating gradually more hard environments. ADR varies from manual domain randomization by not needing a human to specify randomization varieties. [169]
API
In June 2020, OpenAI revealed a multi-purpose API which it said was "for accessing brand-new AI models developed by OpenAI" to let developers call on it for "any English language AI task". [170] [171]
Text generation
The company has actually promoted generative pretrained transformers (GPT). [172]
OpenAI's original GPT model ("GPT-1")
The initial paper on generative pre-training of a transformer-based language design was composed by Alec Radford and his associates, and released in preprint on OpenAI's site on June 11, 2018. [173] It showed how a generative model of language could obtain world knowledge and procedure long-range dependencies by pre-training on a diverse corpus with long stretches of contiguous text.
GPT-2
Generative Pre-trained Transformer 2 ("GPT-2") is a not being watched transformer language design and the follower to OpenAI's original GPT model ("GPT-1"). GPT-2 was announced in February 2019, with only limited demonstrative variations initially released to the general public. The full variation of GPT-2 was not instantly released due to issue about possible abuse, including applications for systemcheck-wiki.de composing fake news. [174] Some experts expressed uncertainty that GPT-2 presented a significant danger.
In reaction to GPT-2, the Allen Institute for Artificial Intelligence reacted with a tool to detect "neural phony news". [175] Other researchers, such as Jeremy Howard, cautioned of "the innovation to totally fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would drown out all other speech and be impossible to filter". [176] In November 2019, OpenAI launched the total variation of the GPT-2 language design. [177] Several websites host interactive presentations of different circumstances of GPT-2 and engel-und-waisen.de other transformer models. [178] [179] [180]
GPT-2's authors argue unsupervised language models to be general-purpose students, highlighted by GPT-2 attaining cutting edge precision and perplexity on 7 of 8 zero-shot tasks (i.e. the model was not additional trained on any task-specific input-output examples).
The corpus it was trained on, called WebText, contains slightly 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It prevents certain issues encoding vocabulary with word tokens by utilizing byte pair encoding. This permits representing any string of characters by encoding both private characters and multiple-character tokens. [181]
GPT-3
First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a not being watched transformer language design and the successor to GPT-2. [182] [183] [184] OpenAI mentioned that the complete variation of GPT-3 contained 175 billion criteria, [184] 2 orders of magnitude bigger than the 1.5 billion [185] in the complete variation of GPT-2 (although GPT-3 models with as couple of as 125 million criteria were also trained). [186]
OpenAI stated that GPT-3 was successful at certain "meta-learning" jobs and could generalize the function of a single input-output pair. The GPT-3 release paper gave examples of translation and cross-linguistic transfer knowing in between English and Romanian, and between English and higgledy-piggledy.xyz German. [184]
GPT-3 considerably enhanced benchmark outcomes over GPT-2. OpenAI cautioned that such scaling-up of language designs could be approaching or coming across the basic ability constraints of predictive language designs. [187] Pre-training GPT-3 needed numerous thousand petaflop/s-days [b] of compute, compared to tens of petaflop/s-days for the full GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained model was not immediately released to the public for issues of possible abuse, although OpenAI prepared to permit gain access to through a paid cloud API after a two-month free personal beta that started in June 2020. [170] [189]
On September 23, 2020, GPT-3 was licensed exclusively to Microsoft. [190] [191]
Codex
Announced in mid-2021, Codex is a descendant of GPT-3 that has actually additionally been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was launched in personal beta. [194] According to OpenAI, the design can produce working code in over a dozen programs languages, a lot of efficiently in Python. [192]
Several concerns with glitches, design defects and security vulnerabilities were cited. [195] [196]
GitHub Copilot has actually been accused of giving off copyrighted code, with no author bytes-the-dust.com attribution or license. [197]
OpenAI revealed that they would cease support for Codex API on March 23, 2023. [198]
GPT-4
On March 14, 2023, OpenAI announced the release of Generative Pre-trained Transformer 4 (GPT-4), efficient in accepting text or image inputs. [199] They announced that the updated technology passed a simulated law school bar test with a rating around the leading 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 might likewise read, evaluate or produce as much as 25,000 words of text, and write code in all significant programming languages. [200]
Observers reported that the model of ChatGPT utilizing GPT-4 was an enhancement on the previous GPT-3.5-based model, with the caveat that GPT-4 retained some of the issues with earlier revisions. [201] GPT-4 is also capable of taking images as input on ChatGPT. [202] OpenAI has actually decreased to expose different technical details and stats about GPT-4, such as the accurate size of the design. [203]
GPT-4o
On May 13, 2024, OpenAI revealed and released GPT-4o, which can process and generate text, images and audio. [204] GPT-4o attained modern lead to voice, multilingual, and vision standards, setting new records in audio speech recognition and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) benchmark compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI released GPT-4o mini, a smaller variation of GPT-4o replacing GPT-3.5 Turbo on the ChatGPT interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI expects it to be especially helpful for enterprises, startups and designers seeking to automate services with AI representatives. [208]
o1
On September 12, 2024, OpenAI released the o1-preview and o1-mini designs, which have been created to take more time to think of their responses, resulting in higher precision. These models are especially efficient in science, coding, and thinking tasks, and were made available to ChatGPT Plus and Staff member. [209] [210] In December 2024, o1-preview was changed by o1. [211]
o3
On December 20, 2024, OpenAI unveiled o3, the successor of the o1 thinking model. OpenAI likewise revealed o3-mini, a lighter and quicker version of OpenAI o3. As of December 21, 2024, this design is not available for public usage. According to OpenAI, they are testing o3 and yewiki.org o3-mini. [212] [213] Until January 10, 2025, wavedream.wiki security and security researchers had the opportunity to obtain early access to these models. [214] The model is called o3 rather than o2 to avoid confusion with telecoms services supplier O2. [215]
Deep research
Deep research is an agent established by OpenAI, unveiled on February 2, 2025. It leverages the abilities of OpenAI's o3 design to perform substantial web browsing, data analysis, and synthesis, delivering detailed reports within a timeframe of 5 to thirty minutes. [216] With browsing and Python tools enabled, it reached a precision of 26.6 percent on HLE (Humanity's Last Exam) criteria. [120]
Image category
CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a model that is trained to examine the semantic resemblance between text and images. It can significantly be used for image category. [217]
Text-to-image
DALL-E
Revealed in 2021, DALL-E is a Transformer design that produces images from textual descriptions. [218] DALL-E uses a 12-billion-parameter version of GPT-3 to translate natural language inputs (such as "a green leather purse shaped like a pentagon" or "an isometric view of an unfortunate capybara") and produce matching images. It can produce pictures of reasonable objects ("a stained-glass window with a picture of a blue strawberry") as well as objects that do not exist in reality ("a cube with the texture of a porcupine"). Since March 2021, no API or code is available.
DALL-E 2
In April 2022, OpenAI announced DALL-E 2, an upgraded version of the model with more sensible results. [219] In December 2022, OpenAI published on GitHub software application for Point-E, a new primary system for converting a text description into a 3-dimensional model. [220]
DALL-E 3

In September 2023, OpenAI revealed DALL-E 3, a more effective design much better able to produce images from complicated descriptions without manual timely engineering and render complicated details like hands and text. [221] It was released to the public as a ChatGPT Plus feature in October. [222]
Text-to-video
Sora

Sora is a text-to-video design that can generate videos based upon brief detailed triggers [223] along with extend existing videos forwards or backwards in time. [224] It can produce videos with resolution approximately 1920x1080 or 1080x1920. The maximal length of produced videos is unknown.
Sora's advancement group called it after the Japanese word for "sky", to represent its "unlimited imaginative potential". [223] Sora's technology is an adjustment of the innovation behind the DALL · E 3 text-to-image design. [225] OpenAI trained the system utilizing publicly-available videos along with copyrighted videos licensed for that purpose, but did not reveal the number or the precise sources of the videos. [223]
OpenAI showed some Sora-created high-definition videos to the general public on February 15, 2024, specifying that it could produce videos up to one minute long. It likewise shared a technical report highlighting the techniques utilized to train the design, and the model's abilities. [225] It acknowledged some of its shortcomings, consisting of battles imitating complex physics. [226] Will Douglas Heaven of the MIT Technology Review called the presentation videos "remarkable", but noted that they must have been cherry-picked and may not represent Sora's normal output. [225]
Despite uncertainty from some academic leaders following Sora's public demo, notable entertainment-industry figures have actually shown considerable interest in the innovation's potential. In an interview, actor/filmmaker Tyler Perry revealed his astonishment at the technology's ability to create reasonable video from text descriptions, mentioning its possible to revolutionize storytelling and material production. He said that his excitement about Sora's possibilities was so strong that he had decided to pause prepare for broadening his Atlanta-based film studio. [227]
Speech-to-text
Whisper
Released in 2022, Whisper is a general-purpose speech acknowledgment model. [228] It is trained on a big dataset of varied audio and is also a multi-task model that can perform multilingual speech acknowledgment as well as speech translation and language identification. [229]
Music generation
MuseNet
Released in 2019, MuseNet is a deep neural net trained to anticipate subsequent musical notes in MIDI music files. It can create tunes with 10 instruments in 15 styles. According to The Verge, a song created by MuseNet tends to begin fairly but then fall under turmoil the longer it plays. [230] [231] In popular culture, preliminary applications of this tool were used as early as 2020 for the web mental thriller Ben Drowned to create music for the titular character. [232] [233]
Jukebox
Released in 2020, Jukebox is an open-sourced algorithm to generate music with vocals. After training on 1.2 million samples, the system accepts a category, artist, and a snippet of lyrics and outputs tune samples. OpenAI specified the songs "reveal local musical coherence [and] follow traditional chord patterns" however acknowledged that the songs do not have "familiar bigger musical structures such as choruses that repeat" and that "there is a significant gap" in between Jukebox and human-generated music. The Verge stated "It's technologically remarkable, even if the results seem like mushy versions of tunes that might feel familiar", while Business Insider mentioned "surprisingly, a few of the resulting tunes are memorable and sound legitimate". [234] [235] [236]
Interface
Debate Game
In 2018, OpenAI introduced the Debate Game, which teaches makers to debate toy issues in front of a human judge. The purpose is to research whether such a method may help in auditing AI choices and in developing explainable AI. [237] [238]
Microscope
Released in 2020, Microscope [239] is a collection of visualizations of every considerable layer and nerve cell of eight neural network designs which are typically studied in interpretability. [240] Microscope was created to analyze the features that form inside these neural networks easily. The designs consisted of are AlexNet, VGG-19, different versions of Inception, and various variations of CLIP Resnet. [241]
ChatGPT
Launched in November 2022, ChatGPT is a synthetic intelligence tool developed on top of GPT-3 that supplies a conversational interface that enables users to ask questions in natural language. The system then responds with a response within seconds.